AD=A120 205 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE
DETECTION OF INHERENT DEADLOCKS IN DISTRIBUTED PROGRAMS.(U)

JUN 82 K HAOr R T YEH

UNCLASSIFIED FOSR-TH-A’-MIA

| or | END
a0 a

20205

ba
nen

1h-82

oTIc

F/6 972

620=80~C=0001
[

UNCLASSIFIED ’]
'_ SECURITY CL’\SSIF'Q‘AYION OF THIS PAGE (When Data Entes d) .
AD IN. “TIONS
REPORT DOCUMENTATION PAGE BEF%iE clgm - ;‘;}g FURM
1. REPORYT NUMBER

2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATAL JMBER

AFOSR-TR- 82-0864 |4)- Jp5

4. TITLE (and Subtitle)

S. YTYPE OF REPORT & PERIOD COVERED

DETECTION OF INHZIRENT DEADLOCKS IN DISTRIBUTED TECHNICAL
PROGRAMS

e o

6. PERFORMING OG. REPORT NUMBER

7. AUTHORC(3) 8. CONTRACT OR GRANT NMBER(s)

Kegang Hao and Raymond T. Yeh F49620-80-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. i:giﬂaAw ERLEMENTT. PROBJEEST, TASK
Department of Computer Science ORK UNIT NUMBERS

University of Maryland PE61102F; 2304/A2
College Park MD 20742

11. CONTROLLING OFFICE NAME AND. ADDRESS . . 12. REPORT DATE
Directorate of Mathematical & Information Sciences|June 1982

Air Force Office of Scientific Research 13. NUMBER OF PAGES
Bolling AFB DC 20332 6

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oflice)

[T

AD A1202005

1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
]

In this paper, the concept of 'inherent deadlock' in distributed programs is '
defined. Several algorithms for detecting inherent deadlocks are given.

Deadlock prevention is crucial in distributed programs. In order to ensure the
correctness of a distributed program, we must avoid the occurrence of the dead- i
lock in its execution. Unfortunately, the deadlock problem in distributed]
program is undecidable, as the halting problem in the sequential problem. ‘
However, partial solutions to the deadlock problem exist. 1In thiﬂCONTINUED)

DD 33" 1473 eoimion oF 1 OV 6515 OBSOLETE UNCLASSIFIE

s:cumrvgémcfou OF T ate Entered)

. 1 <

UNCLASSIFIED . \
SECURITY CLASSIFICATION GF INIS PAGE(When Date Entered) .

N

7 ITEM #20, CONTINUED: ~ the authors shall investigate the detection of inherent
deadlocks in distributed programs. i
i

-

é
1

There are many models for distributed programs. In this paper, the authors :
shall use the model of Communicating Sequential Processes (CSP) developed by '
Hoare s[3+—27—3+. In section 2 they develop some simplifications and abstrac-
tions of CSP and define the concept of 'inherent deadlock'. They they solve
its decision problem.

In section 3 they authors define the concept of D-execution, and obtain a
sufficient condition and a corresponding algorithm for detecting inherent
deadlock.

R AN T e Rt~

In sections 4 and 5 the authors introduce the concept 'matching number' as the
foundation for obtaining two sufficient conditions for detecting inherent
deadlock. Then they reduce these conditions to the solvability of some kind
of indeterminate equation and give its decision algorithm.

. = n e n

_LUNCLASSIFIED
SECURITY CLASSIFICATION OF Tu't PAGE(When Date Ente

~nay

DETECTION OF INHERENT DEADLOCKS IN .
DISTRIBUTED PROGRAMS

by Kegang Hao* and Raymond T. Yeh .

Department of Computer Science

: !
University of Maryland , n ’

College Park, Marvland 20742 A

Abstract

In this paper, the concept of "inherent dead-
lock" in distributed programs is defined. Several
algorithms for detecting inherent deadlocks are
given.

1. Intreduction

Deadlock prevention is crucial in distributed
programs. In order to ensure the correctness of a
distributed program, we must avoid the occurrence
of the deadlock in its execution. Unfortunately,
the deadlock problem in disctributed program is un-
decidable, as the halting problem in the sequential
problem. However, partial solutions to the dead-
lock problem exist. In this paper, we shall inves-
tigate the detection of inherent deadlocks in dis-
tributed programs.

There are many models far distributed pro-
grams. In this paper, we shall use the model of
Communicating Sequential Processes (CSP) developed
by Hoare {1, 2, 3]. In section 2 we develop some
simplifications and abstractions of CSP and define
the concept of "inherent deadlock". Then we solve
its decision problem.

,In section 3 we define the concept of D-
execution, and obtain a sufficient condition and a
corresponding algorithm for detecting inherent
deadlock.

In section 4 and 5 we introduce the concept
"matching number" as the foundation for obtaining
two sufficient conditions for detecting inherent
deadlock. Then we reduce these conditions to the
solvability of some kind of indeterminate equation
and give its decision algorithm.

2. _The Inherent Deadlock and
Its Decision Algorithm

Some simplifications and abstractions of CSP
will be given first in this section.

DEFINITION 2.1. The Commands of CSP are given as
follows:

1. skip command (SK) : skip
2. assignment command (AS) : x:we, where x
is a variable and e is an expression.
3. 1input/output command (I10) :
send commeand : Ale

receive command : A?x

DEFINITION 2.2. The Statements of CSP are defined
as follows:

l. SK statement : SK command

2. AS statement : AS command

3. 1I0 statement : I0 command

4. sequence statement : Sl ;...; Sn , where
Sl,...,5n are statements

5. parallel statement : [Al:: S1 !} H
An:: Sn] where Si,...Sn are statements
cailed processes, and Al is the label of
Si, i=1,...,n

6. alteration (AL) statement:

{bl,el1 +S10 ... 0 ba, cn + Sn}

where bi 1s a boolean expression and ci
is either an SK command or an IO command
bi,ci is called a guard

7. repetition (RE) statement:

*{bl,cl > S10 ... 0 bn,cn - Sa]
DEFINITION 2.3. A Program is a statement.
EXAMPLE 1, program P:

[Al :: *[bi, A2'el = 51} ; A2?x1 ; A3tel'
A2 :: *[b2, Al?x2 -~ 32] ; A3?x2' ; Alle2
A3 :: Al7x3 ; A2!el]

In order to describe the executicn states of
a program, we introduce a special svmbol 2 in-
serted in the program. @S means that the state-
ment S is ready for execution, and S@ means
that the execution of S has terminated.

DEFINITION 2.4 A configuration is a program to
which a number of spacial symbol € have been
inserted.

DEFINITION 2.5. The following formulas are called
gimple formulas:

1. @S => S@, where S is an AS or SK
statement.

2. @[Al:: S1)} ... !} An:: Sn)
=> [Al::@S1 1} ... || An:: @sg)
3. ([Al:: 819)} ... '} An:: Sn@)
=> fal:: S1 'Y ... ') An:: Smj@

*0On leave from Dept. of Computer Science, China
Northwestern University, Xian, Shaanxi, China.

App!‘ oV od fo
distribut

82 1°

3@90

gtea 188

1
1
!

4, S13 ; S2 => 51 ; @S2
S. 3 ... 0 bi,skip => SL 0 ...]

= [... 0 bi,skip -> 351 0 ...]
&, [... 0bi,ci -> Si3 90 ...]

o [... 0bi,ei -> 310 ...]@
7. A ... 0 bi,skip -> 34 0 ...]

= *[... 0 bi,skip ~> 3S1 G ...]
8. [... Jdbi,ei -~ SL0 ...)

a *(... 0bil,cl ->S10...]@
9. *f .., 0 bi,ed -> S13 0 ...]

= @ ... 0bi,cl =>» 3510 ...]

JEFINITION 2.6 The followiag formulas are called
comrunication formulas relative to the correspond-
ing IJ cormands:

1. 3§ => S3 , where S5 is an O statement
2.3 ... 0 bi,ed => S1 0 ...]
= [... 0bl,ci => 810 ...]
where c¢i is an I0 command
3. @%(... Obi,ct -> SL 0 ... }
= * .,, Obi,el => 210 ...]
where ¢l is an I0 command

Definition 2.7. Two commands are called matching
commands, if the following conditions are satis-
fied:

1. One of them is a send camand, and the
other is a receive command,

2. Each command of them i{s withirn the process
addressed by the other command respective-
ly,

3. The variable x and the expression e
are of the same type.

For instance, i{n example 1 A2!el in Al
and Al1?x2 in A2 are zatching commands, Allel’
in Al and Al7x3 in A3 are matching commands,
and so om.

DEFINITION 2.8. A configuration v 1is said to be
deduced from u, denoted by u)== v , if either of
the following conditions is sacisfied:

1. v s the result of replacing all occur-
rences of A in u by B , where A => B
is a cimple formula,

2. There are two matching I0 commands in u,
and v is obtained from u by simulta-
neous application of the communication
formulas relative to these two commands.

DEFINITION 2.9 A configuration u 1s said to be
a last configuration, if there does not exist a
configuration v gsuch that u]== v .

DEFINITION 2.10 A saquence of coafigurations
ul,...,un 1is said to be an execution of a program
P , if the following conditions are satisfied:

1. ul = @P
2, ui Jm= ui+l , {=1,..,,0-1
3. un is a last configuration.

Let us consider the configurations of the
program in exsmple 1:

vl ¢
@(AL :: *{ bl, A2'el => S1] ; A2?2x1 :AJ!elf

s i = ot e

A2 :: *[b2, Al7x2 -> 52] ; A37x2' ; Al'e?
A3 :: AL?7x3 ; A2'ed]

ul :

Al :: 3%{bl, Adtel ->S1];A27x1 ; A3'el’
A2 :: 2%|b2, Al7x2 -> 82) ; A37x2 ; Allel2
AJ :: 2A17x3 ;3 A2'ed]

ul :

Al :: *{bl, A2'el ~> @S1); A27x]l ; A3!el’
A2 i (b2, Al?2x2-> 2S2]; 437x2' ; Alle2
A3 :: 3A17x3 ; A2'e3)

ub

Al :: %[bi, A2'%el ->S1 2} ; A27xl; Al'el'
A2 ::%{b2, Allx2 ~>S2 @]; A3’x2"'; Al'e2
A3 :: @AL?7x3 ; A2'el)

[Al :: *[bl, A2'el -> S1] @; A27x1 ; Allel'
11 A2 :: ®[b2, A ?x2 -> S2] 2; A37x2' ; Alle2
A3 :: 2A17x3 ; A2!e3)

Al :: *{bl, A2'el -> S1]; QA2?x1 ; A3'el’
12 *[b2, Al?7x2 -> S2) ; @A37x2' ; Alle2
t: @AL?x3 ; A2'el]

By tha definition the followimg sequences are
executions:

ul Jem y2 Jm=e u5 Je= y6 .
ul J== y2 Je= y3 Jus 4 je= u2 Jem y5 Je= g6 .
ul J== y2 Jew y3 Jwm y4 je= .,

Jmm y3 Jem 4 jew u2 jmm g5 jEe yp

DEFINITION 2.1l A statement $ 1in program P (s
called an inherent deadlock statement, if S@ does
not occur in any execution of P .

DEFINITION 2.12. A program P 1is called an in-
herent deadlock program if it is an inherend dead-

lock statement.

Intuitively, inherent deadlock is a property
of a program that deadlock zlways occurs in its
euxécution. In CSP, deadlock means nonterminatiom,
i,e., eithar infinite loop executiom, or some pro-
cess 13 forever blocked at an 10 statement.

We shall give a necessary and sufficient con-
dition for inherent deadlock and a corresponding
decision algorithm.

DEFINITION 2.13. Let P be a program. The canon-
dcal sequence of P is a sequence Cl,...Can ot sets
of configurations constructed as follows:
l. €1 = 2P
2. If cK =/= 9 , then
Ck+l = {u | there exists uk in Ck such
that uk]== u and y is not in Ccl,...,Ck}

THEOREM 2.1, The canonical sequence is a finite
sSequence, that is, there exists 2 number n such
that Cn = ¢ .

PROOF Since for every 1 , J Ci nCy = 6 , and the

!

number of configurations of P 1is finite, there-
fore, the canonical sequence must be a finite
sequence.

The following theorem gives a necessary and
sufficient conditien for the occurrence of inher-
ent deadlock. The proof is straightforward by
induction and hence is omitted.

THEOREM 2.2 3 is an inherent deadlock statement
if and only if S@ does not occur in any config-
uration of the canonical sequence Cl,...,Ca.

From Theorem 2.1 and Theorem 2.2 we obtain
the Zfollowing decision algorithm for determining
wnether a statement is an innerent deadlock state-
ment.

ALGORITHM I

1) Construct the canonical sequence of P .

2) Check all configurations in it.

3) If S@ occurs in some configurationm,
then we know that S is not an inherent
deadlock statement.

4) Otherwise, S 1is an inherent deadlock
statement.

For example, the canonical sequence of the
program in exawple 1 is constructed as follows:

Cl={ul} C2% {u2}, C3=3,us)l, C4={us,ub}, C5={ }.

It i{s clear that P@ does not occur in any con~
figuration of the canonical sequence, so P is
an inherent deadlock program.

In the decision algorithm it is necessary o
check all possible configurations in its canonical
sequence. However, some programs have so many
such configurations that to check them exhaustive-
1v is very difficult, if it is not impossible.
Therefore, developing some algorithms for detect-
ing inherent deadlock which requires less time
and space will be our goal in the rest of the
paper.

3. D-execution of Program

In this saction, another sufficient condition
for inherent deadlock and a more efficient al-
gorithm for detecting the inherent deadlock than
algoritim 1 are develoved. We shall introduce
the notion of d terministic execution (D~execution
so that every p.ogram has only one such execution.

DEFINITION 3.1 A D-configuration is a program in
which a number of special symbol @ have been in-
serted and some I0 commands have been underlined.

DEFINITION 3.2 The following formulas sre callad
D-formulas:

1,2,3,4, are the same as the simple formulas
1,2,3,4 .
S5, dr=> ¢ @, vhere r is an I0 command,
6. 3[(bl,cl => S1 0 ... 0 bn,en => Sn]
=> (bl,8cl =-> $1 0 ... 0 bn,%n=->Sa]]

7, @ => =»> «> @
8, [...0 bi,ca -> 542 0 ...]]
= [,,, 0bl,cd ->S10 ...]2
9, 3*{bl,el => S1 0 ... 0 ba,ca => Sn)
=> #(bl,3cl => S1 0 ... 0 bn,%n ~> Sn]2

DEFINITION 3.3. Suppose q and r are two 10 com-
zands in a program P. q is said to precede r {f
either of the following conditions 1s satisfied:

1. There is a sequernce statement Sl;...;Sn
(n>1) in P and q 1s in S1, r is in Sn

2. There is an AL (or RE) statement {... O
bi,ci => St 0...] (or *#[...0 bi,ci =->
Si 0...]) in P and q is ci, r ts in Si
for some i .

DEFINITION 3.4 Suppose 'q and r are 10 com=-
mands in a D-configuration. Command r is said
to be a prime matching cowrand of q 1f

1. r and q are matching commands, and

2. r is not underlined, and

3. either r is not prezeded by any 10 .
command which matches o and is not -
underlined, or q is i: an RE statement
which does not contain r .

DEFINITION 3.5 A D-configuratiom v 1s said to
be deduced from another D-comfiguration u ,
denoted by u |== v , if v is obtained from u
by the application of following two steps:

1. (REPLACING) For every D-formuia A => B
where A occurs in u, replace 4ll occur-
rences of A in u by 8.

2. (UNDERLINING) If 23Q occurs in u, where
q is an 0 command, underline all prime
matching commands of q.

Obviously, we have the following theorem:

THEOREM 3.1 If u ;== v and u ,== w , then
v =W

DEFINITION 3.6 A D-configuration u is said to
be a last D~configuration 1f there is no D-
configuration v such that u (== v ,

DEFINITION 3.7 A sequence of D-configurations
ul,...,un 1s said to be a D-execution of a
program P , if the following conditions are
satisfied:

1., ul = @pP, '
2. ul |we yl+l iel,...,8~1,
3. un is a last D-configuration.

By theorem 3.1 and above definitions it is ¥
clear that the D-execution is unique for any given 1
program. '

EXAMPLE 2 Program P:

[Al:: (bl, A2'el + A27x1 ; A3lel
0 bl', A2lel' + A2?x1' ; Allel'])

vial:: [b2, AlTx2 - A37x2' ; Alle2
0 b2', Al?x2' -~ A3x2 ; Allel')
VA3 Allx] ; A2'ed]

uwl : .0

"Al:: @ (bl, A2'el -~ A27x)1 ; A3lel
0 bl', AZlel' -~ A22x1' ; A3lel')
A2 3[b2, AL?2 ~ A3?2x2' ; Alle2
0 B2', A1?7x2' - A3x2 ; Alle2']
TIA3:: @ Al?7x3 ; A2'el)

{Al:: 'Bl, 2 A2lel - A27?x1 ; A3lel

0 51', T aZlel - A27x1" ; A3lel’)
veA2:: [b2, 3 Allx2 -+ A37x2" ; Alle2
A3

0 b2', @ Al2x2' -+ A3x2 : Alle2']
1t @ Al?7x3 ; A2le3)

[Al:: [bl, A2'el +~ 2 A27x] ; A3lel
0 bl', A2lel' - @ A2?7x1" ; Al'el']
11AZ:: (b2, ALOx2 - @ A3?x2' ; A1Tel
0 2", Al?7x2' = @ A3x2 ; Al'e2')
veA3:: @ Al?7x3 ; A2le3]

From definition we know that
ul |se w2 (== y3 (== ys

is a D-execution. Since PQ@ does not occur im it,
the program P 1s an inherent deadlock program, as
shown below.

LEMMA 3.1. Suppose sequence ui,...un is an execu-
tion of the program P and S is a statement in
)4

(1) f ?S occurs in some ui, then @5 also
occurs in T-execution of P .

(2 Y€ S@ occurs in some ui , then there
is S'? which occurs in the D~execution of P ,
where S’ . the same as § or is obtained from
S by icserting some 2 and/or underlining some
I0 commwands.

Lemsa 3.1 can be proved in a straightforward
fashion using induction. Hence, the proof is omit-
ted hers.

THEOREM 3.2.

If S is a statement in a program P , and no
$'2 occurs in the D-execution, where S' either is
identical to S , or i{s obtained from § by in-
serting some @ and/or underliaing some 10 com-
sands, then $ is an inherent deadlock statement.

PROOF. If S 1is not inherent deadlock statement,
then 5@ occurs in an execution of P . By Lemms
3.1 3'? occurs ir D~execution of P , contradict-
ing the sssumption .° the thewenm.

‘ne fnllowing theorem follows directly and
hence (s proof is omitted.

THEOREYV 3.). If no P'? occurs in D-executiom,

where P' 13 the same as P or is obtained from
P by inserting some 3 and/cr underiining some [0
commands, then P s an {nherent deadlock prcgram

We now give a detaction algorithm derived frem
the above results.

ALGORITHM II.

1. Construct the D-execution of program P .

2. Check the D-execution. If no S'? occurs
in the D-execution, then § 1is an inherent dead-
lock statement and especially, i{f no P'? occurs
in the D-execution, then P (s an inherend dead-
lock program.

It is clear that algorithm II is far zmore ef-
ficient than algorithm I. In order to illustrate
this fact, we make a rough estimate as follows. Sup~
pose that in a program there are a nondeterministic
steps and each step has k (>=2) possible choices.
In algorithm I1 only n D-configurations need to be
constructed for these steps, while in algorithm I
wha: need to be constructed are k+n coniigurations.
So the complexity of algoricthm ! i{s an exponential
function of n, whereas the complexity of algorithm
II 1is a linear function of n,

4, Matching Number Set

Algorithm II is based on the analysis about
reachibility of I0 commands in the executisn, but
in some programs the occurrence of the deadlock is
not like this, For example, the inherent deadlock
\¢ the following program cannot be discovered by
algorithm II. Im this program process Al wants
to send an odd number of values to A2, but A2 can
only receive an even number of them.

EXAMPLE 3,
[Al:: AZ'el ; ={bl, A2!'el' = A2'!el" : S1]
TiA2:: A{b2, Al7x2 -+ Al?x2' ; S2

0 b2, Al?x2 ~ A1?x2' ; AL?x2" ; Al?2"’
s2']]

In order to develop an algorithm for detect-
ing this kind of deadlock, let us introduce some
defintiions.

DEFINITION 4.1. If in the definition of execution
we don't restrict that the application of communi~
cation formulas is cnly for matching I0 commands,
in other words, we replace definition 2.8 (2) by
(2') as follows:

(2') For one or two I0 commands in u, v {is
obtained from u by application of relative com-
mnication formulas, then we obtain a new defini-
tlor about the execution, we call it V-exacution.
Obviously, every execution is a V-execution.

DEFINITION 4.2. Let S be a statement in a
process and q be an 10 command in another process,
avi rl,...,rn be 10 commands {n S which matches
q . For a particular V-execution E, the number of
aoplications of the relative communication formulas

te "he ri is called matching number of g in $

e st

—

PR

e

[

e AP A s

wicth respect to E , denoted by n(S,q,E) . For
all possible Z the set of matchirz oumbers of
in S 1is called macching aumbers set of q in S,

danoted by N(S,q)

Suppose that P 1{s a parallel statement, and
Q , R are processes ir it, and q (inQ) and =t
(in R) are matching commands. It is obvious that
if P 1is not an inherent deadlock statement then
for some V-execution E, n(Q,r,E) = n(E,Q,E)
Thus, we obtain the following theorem:

THEOREM 4.1,

If N(Q,r) a N(R,q) = 3 , then S 1is an in=-
harent deadlock statement.

Ae shall discuss how to compute N(S,q) and
how to decide whether or not XN(Q,v) © N(R,q) = 0.

DEFINITION 4.3. Let Al , &2 be sets of natural
numbers. Tha addition and closure operation are
defined as follows:

Al #+ A2 = {a | a=al+a2, al in Al , a2in A2}
*A = (a8 ! a=al+...+ak, aiin A, K>= 0O}
(for k=0 , we say a = al +...+ ak = 0)

THEOREM 4.2. let S bte a statement in a process

‘and q be an I0 command in another process. Then

N(5,q) can be computed by induction on the struc-
ture of S as follows:

1, 4f S 4s a8 SK or AS statement,
then N(S,q) = {0}
2. 1if S 1is an I0 statement, then

{1} , 1£ $§ and q are matched,
¥(5,q) =
{0} , otherwise
3. 4f S = (Al:: S1]} ... }7 An:: Sa}l, then
n
N(S,q) = I N(Si,q9) ,
i=]

4, 1f S = Sl ;...; Sn , then

n
N(S,q) = I N(Si,q) ,
1=l
S. if S e [... 0»i,ei+S10 ...], then
a

N(S,q) = U (N(ei,q) + N(S&,q)),
1=1
6. 1S =*[,..0bi ci+S10...], then

o
N(S,q) = *(U (R(ci,q) + N(51,q)))
iel

THEOREM 4.3. Every matching numbers set N(5,q)
can be expressed in the following form called
standard form:

n
N(S,q) = U ({ai} + *A1) (4.1)
{=1

where a&i is natural aumber, Al is finite set of
aatural aumbers.

PROOF. By theorem 4.2 every matching numbers set
‘s obtained from sets {1} and {0} by finite times
=f che application of addition, union and c¢losure
operation. Obviously, {1} and {0} can be expressed
in standard form. 1If we can show that the collec~-
tion of all sets which can be expressed in form
(4.1), denoted by 1, is closed under these three
operations, then the theorem will be shown.

LEMMA 4.1. I 18 closed under the addition opera-
tion, the union operat‘..i and the closure opera-
tion.

PROOF. This lemma follcws directly from the fol-
lowing formulas:

*4 + *B= N5 U B)]
*({a; + *A) = *({a} T 4A)

TEEOREM 4.4.

({a}l + *A) n (ib} + *B) =/= p
1f and only if .
alxl +...+ amn -blyl -...- tmym = b-a, (xi,yi = 0)

has & natural number solution, where A and 3
are the finite sets of natural numbers:

A= fal,...,an} , B = {bl,...,bm} , @a,n >= 0
a and b are natuyral aoumbers, b >=» a ,

PROOF. By the definition of closure operation,
this theorem is obvious.

THEOREM 4.5, From number theorv we know that

alxl +...+ anxn - blyl -...~ bmym = ¢

(4.2)
(ai,bi >0 ,m,a> 1 ,c>=0 , xi,yf >» 0)

has a natural aumber solution, if and only if the
greatest common divisor (al ,..., an, bl,...bm) =
k 1is a divisor of c.

We now obtain another algorithm for detecting
the inherent deadlock:

ALGORITHM III. Suppose S is a parallel statement
in a program P .

1. TFor every two matching I0 commands q ia)
¢ and r in R, where Q and R are processes in S,
compute N{Q,r) and N(R,q).

2. Change them into the standard form:

o
N(Q,©) = U ({ai} + *AL) '
iw]l i

1
N(R,q) = U ({bi} + *B{i} . .
1wl
3. For all 1, J check

({ai} + #AL) n ({bj} + *Bj) = @ (4.3)

that is, decide whether realative indeterminate
equations have natural pumber solutions. If for

all ¢+ , 1 (4.3) holds, then
N(Q,z) o N(R,q) = @ (4.5%)

4, If there are qQ,R,q,r such that (4.4) holds,
then S 1is of inherent deadlock.

For instance, the matching numbers sets of
the program in example 3 are:

N(A2, A2tel) = ~{2, 4}
N(Al, a27x2) = {1} + »{2}

Since (2, 4, 2) » 2 is not divisor of 1,
2xl + 4x2 -~ 2vi =1

is unsolvable. Thus the program in example 3 is
an inherent deadlock progiam.

Alzorithm III is also more efficient than
algorithm I. The number of the matching numbers
sets is equal to the number of matching ccommands
in the program, which has nothing to do with the
nunbher of nondeterministic steps. So the more
aondeterministic steps are there ir a program, the
zore clear the efficiency of algorithm III {s,
cemparing with algorithm I.

5. _Algorithm IV

Let us examine an example:
EXAMPLE 4

[Al:: A2'el ; #*(bl, A27xl -~ A2'lel]
19A2:: *[b2, Al7x2 - Alle2
0 b2',Alle2 » Al?7x2 ; All!22 ; Al7x2'})
N(Al, Al?7x2) n N(A2, A2!el)
= ({1} + *{1]) n (*{1,2}) /=@
N(al, Al'e2) n N(AZ, A27x])
= #{1} n #{1,2} =/= @

But this program is an inherent deadlock program
as shown below using Algorithm IV.

DEFINITION 5.1. let S be a statement in a
process R, Q be another process and E be a
V-execution. Suppose that rl,...,rn are 10 com
mands i{a S such that for every ri there is an
10 coummand q in Q which matches ri . For s
V-execution E the number of applications of the
relscive communication formulas to the ri is
called aacching number of § fn S with respect to
E . For all possible E the set of matching
aumbers of Q in S is called matching numbers

set of @ in S,denoted by N(S,Q) .

Similarly, we obcain the following thecrem
and algorithm IV:

THEOREM 5.1.

Suyppose that P 1s a parallel statement and
Q . R are processes in it. If

N(Q,R) n N(R,Q) = ¢
then P 1{s an inherent deadlock statement.

The way to compute N(S,Q) is almost the same

as to compute N(S,q) The only difference is
that (2) of theorem 4.2 is replaced b5v

(2') If S 1is an 10 statement then

{1} if there is an 10 command in ?
N(S,Q) = which matches 3 ,
0} otherwise .

Similarly, algorithm IV is alsc more effi-
cient than algorithm I. Now we compute the match-
ing numbers sets of the program in example 4 as
follows:

N(AL,A2) = (1} + %:2}
N(A2,ALl) = *{2,4;

From ({1} + *{2}) n (*{2,4}) = @ we know that
this program is an inherent deadlock program.

As we mentioned before, the alg-rithms (II)-
(IV) can not de used to decide whether a program
is an inherent deadlock program, as algorithm I
does. However, their capability of detecting
deadlocks are still rather strong. Several dis-
tinct kinds of inherent deadlock errors can be
detected by them respectively. Especially, they
are more efficient than algorithm I. 3- the
authors consider it desirable to develop some
tools for the static analysis distributed programs
using these algorithms.

ACKNOWLEDGMENTS

The authors wish to thank Dr. B. Chen, Dr. J.
Reed, Mr. G. Luckenbaugh, Prof. P. Yuan and Mr. B.
Zhou for their comments and suggestions.

This work is partially supported bv a con-
tract from the . §. Army under Contract DASG 60-
82~-C-0006 and by the Air Force under Contract
F49620~80-CébO1.

REFERENCES

l. Hoare, C. A. R., Communicating Sequential
Processes. CACM 21, 666-677 (1978).

2. Llevin, G. M. and Gries, D., A Proof Technique
for Communicating Sequential Processes. Acta
Informatica 15, 281-302 (1981).

3. Apt, K. R., Frencez, N. and De Roever, W. P.,
A Proof System for Communicating Sequential
Processes. ACM Transactions on Programming
Languages and Syestems, Vol. 2, No. 3, July
1980.

